Figure 15.18 (a) One of the oldest known fossils: a strand of walled cells, 3.5 billion years old The strand resembles certain modern-day filamentous bacteria (b) From Western Australia, Stromatolites that formed between 2,000 and 1,000 years ago in shallow seawater Calcium deposits preserved their structure. They are identical to stromatolites more than 3 billion years old

The Age of Bacteria

How Long the Life has Existed on Earth?

Planet earth ~4.550 billion years old, known from decay rate of radioactive elements preserved in earth’s rock strata.

Era Period titles Million years (106) ago
Cenozoic Quarternary Holocene Present-2
Tertiary (T) Pliocene 2-66
Mesozoic Cretaceous K 66-144
 Jurassic J  144-208
 Triassic Tr  208-245
Paleozoic  Permian P  245-286
 Carboniferous C  286-360
 Devonian D  360-408
 Silurian S  408-438
 Ordovician O  438-505
 Cambrian C  505-570
Precambrian (pC)  Proterozoic  570-2500
 Archaean  2500-4500

Oldest rocks from Greenland, 3.8 billion years old.

  • 3.36 billion years old from Australia.
  • 3.60 billion years old from South Africa.

In 1977, analysis of a 3.40 billion years old rock from South Africa ‘Chertz’-formed by “mineral-laden volcanic water poured over thick mud”;

Microscopic section showed minute round, dumbbell shaped structure look like modern day bacteria, this lead searches from other rocks

All yielded microfossils, single celled life with increasing diversity in younger rocks.

Gun Flint (Canada, 2.5 billion) yielded spheres, rods, filaments, stalked blobs & tentacled forms.

The very oldest rocks known do not harbor micro- fossils.

The ratio of carbon isotopes, C12 , C13 , in the rocks is unusual with higher C12 than expected if abiotic (non-living) inorganic chemistry processes were solely responsible.

The Age of Bacteria

From ancient origins to 670 million years ago biodiversity was dominated by bacteria & their kin, a Kingdom of life called Prokaryotes.

Fig: (a) One of the oldest known fossils: a strand of walled cells, 3.5 billion years old The strand resembles certain modern-day filamentous bacteria. (b) From Western Australia, Stromatolites that formed between 2,000 and 1,000 years ago in shallow seawater Calcium deposits preserved their structure. They are identical to stromatolites more than 3 billion years old.

Prokaryotic evolution is the foundation for the genetic, metabolic and ecological diversity of today. Their role in earth’ s history shows the power of living things to alter the environment at planetary scale.

The precise environmental chemistry of the Archean environment though disputed:

but general characteristics were an atmosphere of N, H, CO2, water vapour & traces of other gases with the exception of O2.

The lack of O2 in ancient seas created reduced environment, determined forms of chemical ions present.

The Archaic environment provided bases in which Prokaryotes developed a diversity of metabolic systems for 3 purposes-

  1. Releasing energy;
  2. Building Carbon reserves;
  3. Tolerating extreme environments.

Archean microbes able to survive at wide range of hostile habitats like, strongly alkaline soda lakes, thermal vents discharging water hotter than 100°C, desiccating salt pans, etc.

Many of these tolerant bacteria now known as Archeabacteria separated from other bacteria called Eubacteria & these 2 domain combine to form Prokaryotes.

All other life belongs to a 3rd domain Eukaryota.

Eukaryotes are distinguished by the biochemistry of structures inside their cells called ribosome, sites where genetic code is read & used to build protein.

Archean bacterial diversity flourished but in lack of gaseous oxygen, free oxygen toxic to many bacteria, highly reactive and readily combines with other common elements.

Atmospheric oxygen: massive departure from chemical equillibrium, free oxygen originates also from life, an example of biodiversity changing global environment and the 1st & most severe biodiversity crisis afflicting earth.

Oxygen originates as by-product from photosynthetic splitting of H2O to obtain H ions.

This atmospheric revolution brought about by another group called Cyanobacteria, photoautotrophic Prokaryotes.

Cyanobacteria (BGA)-oldest algae with definite fossil remains & dates back to 3.0-2.8 bio years; as Stromatoliths.

Atmosphere contained little or no oxygen, methane, ammonia & other reduced compounds prevalent Archaeologists barbertonensis, known BGA of that time.

From then until about 1.8 million years O2 production mopped up, reacting with abundant Ca & iron in sea; some 2.0 billion years old thick iron band deposits were evident.

Two spp. of Cyanobacteria;
left, Synechocystis parvula, 1µm broad;
right, Synechocystis salina, 3-4 µm broad; grow on damp places.

The replacement of CO2-CH4 rich ‘green house’ atmosphere with O2 may have sparked the 1st known ‘Ice Age’ for many prokaryotes O2 was a deadly poison;

Global ecosystems were destroyed, remnant communities banished to habitats beyond O2 reach such as waterlogged mud & deep sea.

Fig: Hydrothermal vent ecosystems. In 1977, biologists discovered a distinct type of ecosystem near the Galapagos Islands in the Galápagos Rift.
a) crustaceans (b) clams and fishes.
Other hydrothermal vent ecosystems have been located in the South Pacific
near Easter Island.

Fig: Life in the abyssal zone. These giant beardworms are members of a small phylum of animals, the Pogonophora. These ecosystems have proved to be of extraordinary interest, since they are among the most important on earth that do not depend in anyway on photosynthesis or on energy from the sun.

Fig: Fossil of unicellular eukaryote about
800 million years old. All life was unicellular until about 700 million
years ago.

Fig: (a, b) Metazoan fossils, 600 million years old from South Australia (c) Fossil trilobite from the dawn of the Cambrian. These fossils abound in North America.

For others this was an opportunity using O2 in respiration to release energy (aerobic) more efficient than anaerobic prokaryotes able to use O2 thrived, in the wake of the O2 holocaust, 3rd domain Eukarya appeared, result of extraordinary biodiversity link up

pro- & eukaryotes differ-

  • In prokaryotes, cellular material are scattered;
  • In eukaryotes, cellular material in discrete membrane.

Bound structures different organelles specialized in different tasks,

Two the most distinctive are-

  1. Mitochondria-site of aerobic respiration
  2. Chloroplast-site for conversion of solar energy to stored chemical energy.

Both chloroplast & mitochondria have their own genetic information separate from that of the rest of the cell.

When cell divides, mitochondria & chloroplast duplicate themselves simultaneously & separately.

Mitochondria & chloroplasts appeared to be remnants of once independent bacteria, subsumed into a 3rd bacterium, the main body cell.

In addition, many motile hair like cilia outside many animal cells uniquely similar to structure of motile spiro-bacteria.

Hints available of this origin of Eukaryotic cells termed Endosymbiosis among modern creatures.

Most extraordinary example –

Mixotricha paradoxa, collection of at least 5 types of pro- & eukaryotes, live in hind guts of Australian termites Mastotermis darwinensis.

One example of a present day endosymbiont:
Paulinella reticulata, a thecate amoeba, inhabiting 2 sausage shaped cyanellae; 20-32 µm long, grow in submerged vegetation of lakes & ponds.

prokaryotic biodiversity characterized by their varied metabolic skills, origin of O2 was the result of prokaryote photosynthesis, even most ancient smallest life was capable of modifying planetary environment.

A global biodiversity catastrophe due to O2 toxicity and climate change occurred but even this most terrible event did not wipe out life.

O2 tolerant prokaryotes took over, new cellular organisms developed from an intricate association of prokaryotes.


This Article is completely based on by the lecture of Dr. Azmal Hossain Bhuiyan, Professor, Department of Botany, University of Dhaka.

Some info and pictures have been added by author.

Print Friendly, PDF & Email
1.3 3 votes
Article Rating

About Syeda Nusrat Jahan Mili

Syeda Nusrat Jahan Mili
A girl with a lot of dreams to accomplish and make her parents proud. Currently studying in 1st year of B.Sc in University of Dhaka. Want to walk with Plantlet a long way. Interested with debate, music, photography and poem recitation.
Notify of
Newest Most Voted
Inline Feedbacks
View all comments
1 year ago

আরো ভালো করা লাগবে???

Abulais Shomrat
11 months ago

I am suggesting some points here. Try to follow them. And if you don’t understand any point, inbox me. The font size isn’t correct. Copy the whole article and choose the font ‘Georgia’ and font size ’16’. Put all the images in the middle. Click on the image and you will get the option to do such. Some captions are too large. What you need to do here is: Copy the whole caption and instead of putting it in the caption box put it below the image like normal paragraph. Give a beautiful introduction. The main headings should be in… Read more »

Would love your thoughts, please comment.x